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We analyze the results o f  a numerical  solution obtained for  the problem of  f ind ing  special features  o f  

radiation and the presence of  a perforation or channelling effect in anisotropic emission f rom the inner 

surface of  a circular cone perforated with round holes. 

Th e  majori ty  of engineer ing  methods  applied to calculate rad ian t  heat exchange  in assemblies  and  

apparatus are based on the assumption that the radiation of the surfaces that constitute a part  of a heat  exchanging 

system is isotropic, i.e., it obeys the Lambert law, according to which the intensity of radiation of the surface is 

assumed to be constant along the direction. However, this condition does not hold for many actual surfaces. As 

indicated in [ t ,  2 ], the error  occurring in the determination of the overall heat flux as a result of the assumption 

of isotropic radition can sometimes attain an appreciable value (25% and greater).  

Perforated surfaces, even with the assumption of local diffuseness, have a very pronounced radiation 

anisotropy, thus allowing one to use them to carry out an effective control of radiation fluxes and heat exchange 

on the whole and optimize the radiative and thermal characteristics of objects. In works dealing with heat exchange 

in perforated systems an assumption is made concerning infinitely thin surfaces. And though even in this case the 

channelling or perforation effect manifests itself [3 ], the radiation anisotropy of an actual surface is not taken into 

account. 

In what follows we consider the radiation of the inner surface of a circular cone with uniformly located 

perforations and the effect of optical and geometric characteristics and of the system on the whole on the net 

radiation flux. 

Defining the angular  coefficient as the ratio of the portion of the radiant  flux incident on the surface 

irradiated or its element to the semispherical radiation of the irradiated surface (or its e lement) ,  we have [1 ] 

~°FI'F2 f f c o s a a  c o s a  2 = fl (a l )  f2 (a2) dFldF2 (1) 
F 1 F 2 7rS 2 

The  angular  coefficient ~o 11 characterizes the radiation of the perforated cone inner  surface onto itself. This  

is a determining angular  coefficient, since, having calculated it, one can easily find the radiation flux from this 

surface into the space. Differentiating the side surface and transforming to cylindrical coordinates for an elemental  

area (Fig. 1) of the side surface, we obtain 

dF R x/ R 2 + H 2 = zdzdO. (2) 
H 2 

Proceeding from the geometry of the system (Fig. 1), in cylindrical coordinates we have 

s = '¢ ~2 1~2 + z 2 _ 2~  2 ~1 c o s  (02  - 01 )  ] + ( z  2 - ~1) 2 , (3) 

Kaliningrad Higher Naval School, Kaliningrad, Russia. Transla ted from Inzhenerno-Fizicheskii  Zhurnal ,  

Vol. 71, No. 2, pp. 273-276, March-April, 1998. Original article submitted January  22, 1996. 

1062-0125/98/7102-0275520.00 © 1998 Plenum Publishing Corporation 275 



/4 

Fig. 1. Diagram for calculation of angular  coefficient of radiation. 

COS C~ i = 

2 ~2 s z ~21 z ~2 z i (1 + ~ 2 )  + - [z 2 - z  I + ( 3 -  2i) z i - z f  

2Z i ~ ~ S 

(4) 

Taking into consideration that 

fi (ai) = I - 2/3 (arccos Yi - )'i ~ ) / ~  when a i < a * ,  

fi(ai) = 1.0 when a i > a * ,  (5) 

where ct i = arctan ~ - 1 ) ,  Yi = u  tan ai, and substituting Eqs. (2)-(5) into Eq. (1), we obtain a 4-fold integral ,  which 

is not computed analytically. 

To solve Eq. (1), we used the statistical-tests method. With 50,000 points, the integral converges to the 

third decimal place inclusive. Moreover,  for calculation one can successfully use s t anda rd  p rog rams  for  the  

generation of pseudorandom numbers ,  even though some of them yield distr ibutions that  somewhat  differ f rom a 

uniform one. 

The  results of calculation of the angular  coefficient of radiation as a function of fl at different  values of 

and at/~ = 0.1 and 1.0 are presented in Fig. 2. From the figure it is seen that  as the perforat ion degree  increases,  

the angular  coefficient decreases,  with this decrease being almost  linear. A most substant ia l  decrease  occurs at 

small values of/~. The  change in ~o at large k~ is insignificant. Thus ,  when the values of/~ are  large, the angu la r  

coefficient of radiat ion can be calculated with sufficient accuracy having t rans formed the well-known formula  of 

Christ iansen [4, 5 ] for two disks by letting one of the radii of the disks approach zero. 

If we compare  the obtained values of ~o with the angular  coefficient for a cone having an infinitely thin 

perforated surface,  we see an appreciable difference in the dependence ~o = fq6) for the cases at fl = 1.0. Evident ly ,  

in this case there are no interchannel surfaces. In a cone formed by an infinitely thin surface,  the side surface area  

is equal to zero, i.e., the cone virtually does not exist. In this case ~o = 0, i.e., there is no radiat ion from the sys tem.  

In a perforated cone whose surfaces have thickness this effect is not observed,  because at fl = 1.0 and  

/~ ;~ 0 the surface area  between perforat ions is equal to zero, but the area of the side surfaces of the channels  differs 

from zero. In this case the perforated surface of the cone has,  figuratively speaking,  a honeycomb s t ructure  with 

the thickness of the walls of the cells tending to zero. It is evident that  such a surface will emit  also at/3 = 1.0, and  

the main contribution to radiation will be determined by the inner surface of the channels.  When the values of/z  
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Fig. 2. Function T(fl) at kt = 0.1 (dashed curve), /~ = 1.0 (solid curve) at 

different values of ~ (at the curves). 

Fig. 3. Function T(~) at fl -- 0.6 and different values of ~ (solid curve);  the 

function SO~) at fl = 0.9 and  different values of ~j (dashed curve),  the function 

qn(fl) at e -- 0.1, ~ = 0.1./~ is a paramete r  (dashed-dot ted  curve).  

are small, the relative thickness of the wall of the cone decreases,  which makes  the function SO(fl) approach an 

analogous one for a cone with an infinitely thin surface, and  the values coincide in the limiting case when/x --, 0. 

Figure 3 presents  the function SO(g) forf l  = 0.9 and different values of ~. As/x increases (which is equivalent 

to a relative elongation of the perforation channels or thickening of the side surface of the cone),  the total area  of 

the emitting surface increases and,  correspondingly,  the value of T is increased at a fixed ft. This  increase is typical 

for any  values of ix. Here  it should be noted that such a process of the change in SO is observed only at fl = const. 

This  can be explained by the fact that,  though being connected with fl through the size of a hole, the paramete r /x  

exerts  its influence on the change in the radiation of the surface inside of the perforat ion channels .  When ~ = const,  

we have lim T = const; so, for example,  when ~ = 0.1, lim SO= 0.1. It is evident that in this case one observes the 
. u~0  u--,0 

case of an infinitely thin perforated surface [3 ]. Then  the angular  coefficient of radiat ion is a function only of/5 

and ~', and its calculation can be carried out by the formulas of [3 ]. This  very figure also depicts the function SO (~) 

at fl = 0.6 for different values of/~. This dependence is nonlinear,  and the values of SO decrease  as ~ increases.  We 

can see from the figure that So is always smaller  for a perforated cone than for a continuous one, and  the thicker 

the wall of the cone, the closer the values of So to So(~) for a cont inuous-surface cone. 

For practical calculations of radiation in systems containing a perfora ted  cone we obta ined  a formula  that  

approximated  the calculated data for the angular  coefficient in the ranges of fl,/~, and ~ of from 0 to 1: 

SO = SO0 - I(0.464~ 2 - 0.794~ - 0 .736)#2 _ (1.05~2 _ 1.69~ + 

+ 1.49)/~ + 0.464~ 2 - I. 14~ + 1.0 ] f l ,  

where See = 0-355~ e2 - 1.075~ + 1.01 is the angular coefficient of the continuous cone. This formula determines 9o 
with an error not exceeding 5%.  Moreover, the error  is decreased with a decrease  in the parameters /~  and ~. 

To  de te rmine  the net radia t ion flux f rom the inner  surface of a perfora ted  cone the resolvent-zonal  

approximation [5 ] was used. The  equation that determines this flux in dimensionless  form can be simplified to the 

form 

[ (1-E) T(~"u'fl) + 1] (1--fl) " 
% = - e  [ l  - so (~, /z, f l ) ]  l - ( l - e )  so(~,/~,fl) 

The qn(fl) dependences at M = 0.I and 1.0, ~ = 0.I ,  and e = 0.I are presented in Fig. 3. It is seen from the 
figure that in the region with 0.I </5 < 0.3 there is an inner-surface radiation maximum, with an increase in 
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radiation occurring with a decrease in/~. The position of the maximum agrees well with the data of [3 ] for systems 

with infinitely thin perforated surfaces. With an increase in the thickness of the radiating surface, this effect 

decreases. Thus, we can conclude that the radiation that passes through the perforations of the system makes a 

greater contribution into the perforation effect than the radiation of the walls of the perforations, and in order to 

increase radiation from a system at fixed values offl and ~, it is necessary to decrease the thickness of the surfaces 

that form the system. 
The results obtained make it possible to represent more fully the mechanism of the channelling or 

perforation effect in modeling of an ideal black body. Thus, the analysis carried out makes it possible to explain 

easily the efficiency of a spherical and cylindrical model of an ideal black body with emission through a hole in a 
side surface compared to the widely used conical and cylindrical models with radiation through the base of the 

form. 

N O T A T I O N  

dFi, elemental area on surface of cone; R, radius of cone base; H, cone height; S, distance between 

elemental areas; r, z, and 0, cylindrical coordinates; ~ = R / H ;  h, surface thickness; d, diameter of perforations;/~ 

= h / d ;  fl, degree of perforation; f i (a i ) ,  shape factor; a i, angle between normal to dFi and S; qn, dimensionless net 

radiation flux; e, integrated emissivity of surface; l i, distance along normal from dFi to z axis; Pi, distance between 

d F  i and the point of intersection of the z axis with the normal to the opposite elemental area. Subscripts: l, 2, 

number of an elemental area. 
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